If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-x^2+1587767878
We move all terms to the left:
0-(-x^2+1587767878)=0
We add all the numbers together, and all the variables
-(-x^2+1587767878)=0
We get rid of parentheses
x^2-1587767878=0
a = 1; b = 0; c = -1587767878;
Δ = b2-4ac
Δ = 02-4·1·(-1587767878)
Δ = 6351071512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6351071512}=\sqrt{498436*12742}=\sqrt{498436}*\sqrt{12742}=706\sqrt{12742}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-706\sqrt{12742}}{2*1}=\frac{0-706\sqrt{12742}}{2} =-\frac{706\sqrt{12742}}{2} =-353\sqrt{12742} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+706\sqrt{12742}}{2*1}=\frac{0+706\sqrt{12742}}{2} =\frac{706\sqrt{12742}}{2} =353\sqrt{12742} $
| 2b+17=-3 | | 1.5(x+4)+2x-3=10 | | 8=m/1.9 | | 2/x+3=4/5 | | b/2=15.3 | | 30+12x-4=10x-10 | | 20z+20=2z+20z-20 | | 23x6=(20+3)x6 | | x-0.20=120 | | 2*r^2+6*r-6=0 | | x-0.3=294 | | 3(3x-2)=-4x+9 | | 30+12x-4=20x+5 | | -2t-15=3t | | 26-4a=2 | | 2296.32=89.7p | | x/0.3=294 | | 8-12p=-10p-16 | | -2296.32=89.7p | | 6x°-12=180° | | -0.1x+4.691x=-14.6912 | | -16w-17.77=-14.5w+9.38 | | 5.2h=-38.48 | | 0,08x=4 | | 28.8=1.8b | | 39=1/3/10b | | -12m-20=-10m+20-12m | | 2(n-4)+5n=16+7n-1 | | 38=-16t^2+80t+6 | | 3w-13w=50 | | Q=5k+5k | | 5j+16=7j-20 |